
QTC4SO: Automatic Question Title Completion for
Stack Overflow

Yanlin Zhou†, Shaoyu Yang†, Xiang Chen†∗, Zichen Zhang†, Jiahua Pei†
†School of Information Science and Technology, Nantong University, China

Email: yanlin.z@stmail.ntu.edu.cn, shaoyuyoung@gmail.com, xchencs@ntu.edu.cn, 384758226@qq.com, 761365414@qq.com

Abstract—Question posts with low-quality titles often discour-
age potential answerers in Stack Overflow. In previous studies,
researchers mainly focused on directly generating question titles
by analyzing the contents of the posts. However, the quality of
the generated titles is still limited by the information available
in the post contents. A more effective way is to provide accurate
completion suggestions when developers compose titles. Inspired
by this idea, we are the first to study the problem of automatic
question title completion for Stack Overflow and then propose
a novel approach QTC4SO. Specifically, we first preprocess the
gathered post titles to form incomplete titles (i.e., tip information
provided by developers) for simulating the scene of this task.
Then we construct the multi-modal input by concatenating
the incomplete title with the post’s contents (i.e., the problem
description and the code snippet). Later, we adopt multi-task
learning to the question title completion task for multiple pro-
gramming languages. Finally, we adopt a pre-trained model T5 to
learn the title completion patterns automatically. To evaluate the
effectiveness of QTC4SO, we gathered 164,748 high-quality posts
from Stack Overflow by covering eight popular programming
languages. Our empirical results show that compared with the
approaches of directly generating question titles, our proposed
approach QTC4SO is more practical in automatic and human
evaluation. Therefore, our study provides a new direction for
automatic question title generation and we hope more researchers
can pay attention to this problem in the future.

Index Terms—Stack Overflow, Question Title Completion,
Multi-task Learning, Pre-trained Model, Human Study

I. INTRODUCTION

Stack Overflow has been widely used by developers as one
of the most common ways to seek answers related to technical
questions [1]–[3]. A high-quality question post is likely to
attract more attention from potential answerers and the impor-
tance of post quality was verified in previous studies [4]–[6],
[6]–[8]. To help developers effectively write question posts,
Stack Overflow has provided a list of quality assurance guide-
lines for community members1. Moreover, researchers also
aimed to improve the post quality from different perspectives
(such as duplicated question detection [9], [10], question title
generation [11]–[13]). In this study, we mainly focus on the
problem of question title generation for Stack Overflow. To
our best knowledge, Gao et al. [11], [14] were the first to
study this problem and proposed the approach CODE2Que by
analyzing the code snippets. Then Liu et al. [12] proposed the
approach SOTitle and Zhang et al. [13] proposed the approach

∗ Xiang Chen is the corresponding author.
1https://stackoverow.com/help/how-to-ask

CCBERT, which aimed to generate question titles by analyzing
the bi-modal inputs (i.e., problem descriptions and the code
snippets).

However, the quality of question titles generated by previous
approaches [11]–[13] is still limited, which is restricted by
the information available in the post contents. During the
preparation process of the post, a more promising way is
to provide accurate completion suggestions when developers
compose titles. We use a real post from Stack Overflow2 shown
in Fig. 1 to illustrate our research motivation. For this post,
if we analyze the problem description and the code snippet,
SOTitle [12] can generate the title “Python requests.session()
not working”, which cannot effectively reflect the purpose
of this post. However, if the developer provides some tip
information (i.e., “Python-Request”), our proposed approach
QTC4SO can provide an accurate completion suggestion (i.e.,
“being blocked by Cloudflare”).

Problem

Description

Question

Title

Ground Truth: Python-Request being blocked by Cloudflare

SOTitle: Python requests.session() not working

QTC4SO: Python-Request being blocked by Cloudflare

import requests

import time

s = requests.Session()

s.get('https://www.off---white.com/en/GB/')

headers = {'Referer': 'https://www.off---white.com/en/GB/login'}

payload = {

'utf8':'√',

'authenticity_token':' ',

'spree_user[email]':'EMAIL@gmail.com',

'spree_user[password]':'PASSWORD',

'spree_user[remember_me]': '0',

'commit': 'Login'

}

r = s.post('https://www.off---

white.com/en/GB/login',data=payload,headers=headers)

print(r.status_code)

g = s.get('https://www.off---white.com/en/GB/account')

print(g.status_code)

print(g.text)

I am trying to log into a website. When I look at print(g.text) I am not getting

back the web page I expect but instead a cloudflare page that says ‘Checking

your browser before accessing’

Why is this occurring when I have set the session?

Code

Snippet

Fig. 1. A post from Stack Overflow to show the motivation of our study

In this study, we aim to study the problem of question
title completion for Stack Overflow. To solve this problem,
we propose a novel approach QTC4SO. In particular, given
a post’s contents (i.e., the problem description and the code
snippet) and an incomplete title, QTC4SO can automatically

2https://stackoverflow.com/questions/49087990

provide the completion suggestion. To train the title comple-
tion model, we first gather high-quality question posts from
Stack Overflow by considering eight popular programming
languages. Each selected post contains a complete question
title, the problem description, and the code snippet. Then,
we preprocess the gathered original question titles to adapt
to our question title completion task. Specifically, we generate
three different incomplete titles for each complete title. To
generate the incomplete title, we randomly mask a certain
number of words at the end of this title. Then, we formalize the
question title completion for each programming language as
separate but related tasks and resort to multi-task learning [15],
which can help to better exploit complementary and shared
knowledge between different tasks. Finally, we adopt a pre-
trained model T5 [16] to learn the potential title completion
patterns from our gathered corpus.

In our empirical design, we gathered 164,748 high-quality
posts from Stack Overflow by covering eight programming
languages as our experimental subject. To verify the effective-
ness of QTC4SO, we consider five performance measures (i,e.,
ROUGE [17], GLEU [18], BLEU [19], Perfect predictions,
Levenshtein distance [20]), which have been widely used
in previous text summarization [21]–[23] and text comple-
tion [24]–[28] studies. In our study, we want to answer the
following four research questions (RQs).

RQ1: Can QTC4SO generate higher-quality question
titles than state-of-the-art baselines in an automatic eval-
uation way?

Results. We consider a traditional language model N -
gram [29] and a recently proposed question title generation
approach SOTitle [12] as baselines. Comparison results show
that QTC4SO can achieve better performance than these two
baselines for different programming languages.

RQ2: Can QTC4SO achieve the best performance when
considering both the problem description and the code
snippets in the post?

Results. We design two control approaches (i.e., w/o desc
and w/o code) to verify the contribution of code snippets
and problem descriptions for QTC4SO. According to the
results of our ablation experiment, we find using both problem
descriptions and code snippets can help to achieve the best
performance.

RQ3: Can QTC4SO achieve the best performance when
considering the pre-trained model T5?

Results. We investigate the performance impact of dif-
ferent pre-trained models (such as T5 [16], BERT [30],
CodeBERT [31], and BART [32]) on QTC4SO. The final
results demonstrate that QTC4SO with T5 can achieve the
best performance.

RQ4: Can QTC4SO generate higher-quality title com-
pletion suggestions than state-of-the-art baselines by hu-
man study?

Results. Since the automated evaluation results may not
correlate well with the quality of the generated titles [33],
we further conduct a human study to investigate the quality
of titles generated by QTC4SO in terms of the similarity, nat-

uralness, and informativeness criteria. Our human evaluation
results also demonstrate the competitiveness of QTC4SO.

Compared to previous studies on question title genera-
tion [11]–[13], our study investigates a more practical problem.
By providing some tip information when developers compose
question titles, our proposed approach QTC4SO can help
to provide accurate title completion suggestions, which can
eventually generate higher-quality question titles.

The main contributions are summarized as follows.
• Direction. We are the first to study the task of question

title completion for Stack Overflow, which opens a new
direction for automatic question title generation.

• Approach. For this task, we propose a novel approach
QTC4SO based on the multi-modal input (i.e., the incom-
plete title with the contents of the post). QTC4SO adopts
multi-task learning to this task for multiple programming
languages and a pre-trained model T5 to learn the title
completion patterns automatically.

• Corpus. We build a large-scale corpus by mining Stack
Overflow for this task, which contains 164,748 high-
quality posts covering eight programming languages.

• Study. We conduct both automatic evaluation and human
evaluation to verify the competitiveness of QTC4SO.

• Tool. We developed a browser plugin tool based on
QTC4SO to assist developers in composing question
titles. The video demonstration of using our tool is avail-
able at https://www.youtube.com/watch?v=4njf4zgDdRs.

II. OUR PROPOSED APPROACH QTC4SO

We show the framework of QTC4SO in Fig. 2. Specifically,
QTC4SO contains three phases: the corpus construction phase,
the model construction phase, and the model inference phase.
In the rest of this section, we show the details of each phase.

A. The Corpus Construction Phase

In this phase, we first use programming language tags to
collect relevant question posts from the data dump Posts,
which includes all question posts generated in Stack Overflow
from July 2008 to March 2022. Here, we mainly concern with
eight popular programming languages (i.e., Python, Java, C#,
JavaScript, PHP, Ruby, Go, and HTML), which are chosen
based on the popularity statistics of tags in Stack Overflow3.
Then we filter low-quality posts by heuristic rules. In our
study, we design four rules according to suggestions from
previous studies [34], [35] and the characteristics of this task.
These four heuristic rules are shown as follows.

• Rule 1: The score of the question posts should not be
smaller than 10.

• Rule 2: The question posts should contain the code
snippets.

• Rule 3: The question posts should have the accepted
answers.

• Rule 4: The title length of the question posts should not
be smaller than 4 words.

3https://stackoverflow.com/tags?tab=popular

Score≥10 Contain Code
Snippets

Accepted
Answer

Title Length
≥4

Heuristic Rules

Filter

Extract

TitleTitleDesc
TitleTitleTitle

TitleTitleCode

Corpus

Multi-modal Input

What does the "yield" keyword do in Python?

Variant1：What does the <MASK>
Variant2：What does the "yield" keyword <MASK>
Variant3：What does the "yield" keyword do in <MASK>

Complete Title:
Does Python have a ternary

conditional operator?

Incomplete Title:
Does Python have a

Desc Code

The Corpus Construction Phase The Model Construction Phase The Model Inference Phase

Incomplete
TitleC# Desc Code

Incomplete
TitleRuby Desc Code

Incomplete
TitleJava Desc Code

Task 1

Task 2

Task 8

Multi-Task Learning

Pre-trained T5 Model

Hidden State Decoder

Feedforward

Multi-Head
Attention

Add&Norm

Add&Norm

Encoder

Add&Norm

Feedforward

Multi-Head
Attention

Masked
Multi-Head
Attention

Add&Norm

Add&Norm
×12

×12

Fig. 2. Framework of our proposed approach QTC4SO

Next, we build the initial corpus by gathering the question
title, the problem description, and the corresponding code
snippet from each collected post. In this corpus, we treat each
post as a triplet <Title, Desc, Code>. Previous studies [11]–
[13] mainly generated question titles from scratch. However,
our study mainly concerns the question title completion task.
Therefore, we need to prepare incomplete titles before train-
ing the question title completion model. Assuming that the
question title ti contains n words, we can define the masking
operator as follows. Specifically, this operator first generates
a random number nrand (1<nrand<n). Then it generates
an incomplete title (i.e., variant) with the last nrand words
masked. Examples of generating incomplete titles for a specific
post are shown in the lower left part of Fig. 2. We illustrate the
rationality of our designed masking operator as follows. First,
since developers always compose titles in a linear way (i.e.,
from the first word to the last word), the masking operator
selects the last consecutive words to mask. Second, since our
study mainly concerns the question title completion task, the
incomplete titles should at least contain one word. Therefore,
the masking operator can at most mask n − 1 words. In our
study, we generate three different incomplete titles for each
title by applying the masking operator with three different
values of nrand, and the reasons are illustrated as follows.
First, using Rule 4 can ensure that each title can generate at
least three different incomplete titles. Second, generating more
incomplete titles may help to improve model performance, but
also significantly increase the model construction cost.

B. The Model Construction Phase

In this phase, we formalize the question title completion
tasks for different programming languages as separate but
related tasks and then use multi-task learning [15] by ex-
ploiting complementary and shared knowledge. To synthesize
the multi-modal input, we concatenate the incomplete question
title and the post contents (i.e., the problem description and
the code snippet). To alleviate the OOV (Out-Of-Vocabulary)
problem, we apply the SentencePiece method [36] to split the
multi-modal input. Finally, we train our model by adopting a
pre-trained model T5 [16] to automatically learn title comple-
tion patterns.

1) Multi-task Learning: In our study, we represent the
multi-modal input by concatenating the incomplete title
Xincomp with the content of the question post, which contains
the problem description Xdesc and the code snippet Xcode.
In particular, we first use a special identifier (<body>) to
distinguish Xincomp and Xdesc. We second use a special
identifier (<code>) to distinguish Xdesc and Xcode. Finally,
we add a [mask] tag after the incomplete title to indicate the
masked part of the title, which will be predicted by our trained
model. Since we formalize question title completion tasks for
different programming languages as separate but related tasks,
we resort to multi-task learning [15] in our study, in which a
shared model is trained on multiple tasks at the same time. As
a method of transferring knowledge across related tasks, multi-
task learning [15] improves model generalization by exploiting
the domain-specific information contained in the related tasks
and capturing the common features through sharing hidden

layers among all tasks. Thus, the over-fitting issue can be
alleviated and the model can be more adaptable to new tasks
in the future. As shown in Fig. 2, we assign the task-specific
prefix to the input X for different programming languages
(e.g., the prefix “JS:” represents the programming language
JavaScript), which enables the model to distinguish different
tasks. The final input format is shown as follows.

X = prefix⊕Xincomp ⊕ [MASK]

⊕ < body > ⊕Xdesc⊕ < code > ⊕Xcode

(1)

SentencePiece. To alleviate the OOV problem, we use
the SentencePiece method [36] to split the input X . As a
simple, efficient, and language-independent pre- and post-
processor, SentencePiece can be easily integrated into neural
network-based text generation systems, which are increasingly
moving towards language-independent architectures. Senten-
cePiece implements two subword segmentation algorithms:
byte-pair-encoding (BPE) and the unigram language model.
Therefore, by using SentencePiece, we can build a full end-
to-end system without relying on any language-specific pro-
cessing.

2) Pre-trained Encoder-Decoder Transformer Model: The
T5 model proposed by Raffel et al. [16] is a unified pre-
trained encoder-decoder Transformer model [37], which can
convert all text-based language problems into a text-to-text
format and allow for transfer learning and multi-task learning.
The primary building block of T5 is self-attention [38] and T5
can be trained with two stages: the pre-training stage and the
fine-tuning stage. Specifically, the former stage allows for the
construction of a shared knowledge base that is useful for a
large number of sequence-to-sequence tasks. While the latter
stage fine-tunes the pre-trained model to a specific downstream
task.

In our study, we fine-tune a pre-trained T5 model and its
encoder-decoder Transformer implementation roughly follows
the original proposal of Raffel et al. [16]. First, an input token
sequence is mapped to an embedding sequence and then is
passed into the encoder. Each block of the encoder is made up
of two subcomponents: a self-attention layer and a small feed-
forward network. Self-attention [38] is calculated by using
queries (Q) and keys (K) with the dimension dk, and values
(V) with the dimension dv . To be more precise, the dot product
of the queries and keys is first computed. Then the weight of
each value is then calculated using the softmax function after
each has been divided by

√
dk. The output matrix is calculated

as follows:

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (2)

The feed-forward network (FFN) is composed of two linear
transformations separated by a ReLU activation.

Layer normalization [39] is applied to the input of each
subcomponent. Following the layer normalization, a residual
skip connection [40] adds each subcomponent’s input to its
output.

The decoder is similar to the encoder in structure except that
it includes a masked self-attention layer, the purpose of which
is to prevent the model from noticing unknown information
during model training. Suppose in the (k+1)-th decoding step,
we have generated the first k tokens of the predicted title and
then input the embedding vector of the generated sequence
and the hidden vectors of the encoder output to the decoder,
the model will generate the (k+1)-th token.

Since the output of our question title completion task is a
long sequence, we find utilizing beam search [41] can improve
the performance. Beam search can return a list of the most
likely output sequences, which can provide the developer
with a few of the most likely title completion suggestions.
Specifically, it selects the m tokens with the lowest heuristic
cost at each time step, where m denotes the beam width,
by scanning through each step’s title tokens one by one. It
continues to select probable tokens for the following tokens
after trimming any remaining branches until it comes across
the end-of-sequence sign. Finally, for each question post, our
model may return m candidate question titles. According to
their average probabilities during the beam search operation,
we rank the generated candidate question titles.

3) Fine-tuning the T5 Model: After modeling the multi-
modal inputs by concatenating the incomplete titles with the
contents of the question posts and adding prefixes to them,
we fine-tune the T5 model in a multi-task setting, in which
each task is automatic question title completion for a specific
programming language.

In our study, we train the parameters θ of our model by
minimizing the loss function for eight programming languages
as follows.

θ∗ = argmin
θ

1

8

8∑
i=1

L(yi, f(xi; θ)) (3)

C. The Model Inference Phase

In this phase, by analyzing a question post’s content and tip
information (i.e., the incomplete title) provided by the devel-
oper, our trained model can provide completion suggestions
for composing the question title.

III. EXPERIMENTAL SETUP

A. Research Questions

In our empirical study, we design the following four re-
search questions (RQs).

RQ1: Can QTC4SO generate higher-quality question
titles than state-of-the-art baselines in an automatic eval-
uation way?

Motivation. To demonstrate the effectiveness of QTC4SO,
we choose five automatic measures to evaluate the quality
of question titles generated by QTC4SO and our considered
baselines in this RQ.

RQ2: Can QTC4SO achieve the best performance when
considering both the problem description and the code
snippets in the post?

Motivation. In this RQ, we want to conduct ablation ex-
periments by investigating the performance impact of different
input modals (i.e., the problem description and the code
snippet) on QTC4SO.

RQ3: Can QTC4SO achieve the best performance when
considering the pre-trained model T5?

Motivation. In this RQ, we want to investigate the perfor-
mance impact of different pre-trained models on QTC4SO.
Therefore, we consider the other three popular pre-trained
models from the field of natural language processing.

RQ4: Can QTC4SO generate higher-quality title com-
pletion suggestions than state-of-the-art baselines by hu-
man study?

Motivation. To effectively evaluate the semantic informa-
tion in the generated question titles and avoid the weakness
of the automatic evaluation measures (e.g., some measures are
designed by only considering the lexical overlap between the
ground-truth titles and the generated titles), we want to conduct
a human study to evaluate the effectiveness of QTC4SO in this
RQ.

B. Experimental Subject
As described in Section II-A, we finally gathered a total

of 164,748 question posts from Stack Overflow based on
four heuristic rules. Then we split the gathered initial corpus
according to 80%: 10%: 10% as the training set, the validation
set, and the test set, respectively. Notice in our corpus split,
we consider the temporal relationship of posts and guarantee
that the test set contains the latest posts. The reason is that
partitioning posts in chronological order is more applicable to
the real-world application, and can relieve the data leakage
problem caused by the homogeneous questions between the
training set and the test set. The statistical information of
the corpus for different programming languages is shown in
Table I.

TABLE I
THE STATISTICAL INFORMATION OF OUR CONSTRUCTED CORPUS

Language Training Set Validation Set Test Set

Python 30,404 3,801 3,801
Java 25,136 3,142 3,143
C# 25,332 3,167 3,167

JavaScript 27,219 3,402 3,403
PHP 10,573 1,322 1,322
Ruby 4,521 565 566
Go 1,742 218 218

HTML 6,867 858 859

Total 131,794 16,475 16,479

Finally, to adapt the initial corpus to the title completion
task, we generate three different incomplete titles for each
question title based on the masking operator introduced in
Section II-A.

C. Performance Measures
We consider five performance measures, which have been

widely used in previous similar tasks (such as text summa-
rization [21]–[23], source code understanding and genera-
tion [42]–[48] and text completion [24]–[28]). Notice, when

computing the values of these measures for the question title
completion approaches (such as QTC4SO), we only focus on
the masked tokens in the ground-truth title (i.e., the ground-
truth string) and the completed tokens in the generated title
(i.e., the generated string).

Since the title completion task can be treated as a special
text summarization task, we first consider three text similarity-
based measures.

ROUGE. ROUGE [17] is based on recall. In our study,
we use ROUGE-L, which is based on the longest common
subsequence, to measure the lexical overlap between the
generated string and the ground-truth string.

BLEU. BLEU [19] is used to measure the degree of simi-
larity between the generated string and the ground-truth string.
Specifically, BLEU n determines how many n-grams appear
in the generated string by calculating the n-gram accuracy
between the generated string and the ground truth.

GLEU. GLEU [18] is a customized metric from BLEU.
GLEU is widely used to evaluate GEC (Grammatical Error
Correction) systems and is shown to highly correlate with
human judgments on GEC tasks [49].

Since question title completion is also similar to the code
completion task, we further consider two related measures.

Perfect predictions (PP). This measure returns the percent-
age of instances where the model predicts the same sequence
as the ground-truth sequence. In our question title completion
task, we calculate the percentage of perfect predictions (PP k)
when the model successfully guesses the first k masked tokens.

Levenshtein distance (LD). This measure [20] is based on
the word level and calculates the minimum number of edit op-
erations required to convert from one string to the other string.
In our study, we compute the Levenshtein distance (LD k) by
counting the smallest number of word edits required to convert
the predicted string into the ground truth title by considering
the first k masked tokens. Different from the previous four
measures, the smaller the value of LD, the more similar the
two strings (i.e., the better the performance of the model).

To guarantee the correct implementation of these perfor-
mance measures, we aim to use mature libraries. For example,
we compute the values of BLEU, GLEU, and ROUGE using
the NLTK package4 and the ROUGE package5, respectively.

D. Experimental Settings

We implement QTC4SO and baselines by using the Pytorch
framework6 and the pre-trained parameters of T5-base7. The
hyperparameter setting of our experiments is shown in Table II.
To alleviate the overfitting problem, we use an early stop
strategy [50] (i.e., the model stops training when the loss
on the validation set does not decrease in 10 consecutive
iterations, and gather the parameter values from the model
with the best performance). Since multi-task learning is used in

4http://nltk.org/
5https://pypi.org/project/rouge
6https://pytorch.org/
7https://huggingface.co/t5-base

QTC4SO, we select the training step where the model achieves
the best performance on different tasks.

TABLE II
THE HYPERPARAMETER SETTING OF OUR PROPOSED APPROACH QTC4SO

Hyper-parameter Name Hyper-parameter Value

encoder layers 12
decoder layers 12

hidden size 768
early stopping patience 10

num beams 10
maximum input length 512
maximum output length 48

length penalty 1.2

Our experiments were conducted on a computer with an
Intel(R) Xeon(R) 4210 CPU and a GeForce RTX3090 GPU
with 24 GB memory.

IV. RESULT ANALYSIS

A. Result Analysis for RQ1

Approach. Since we are the first to study automatic ques-
tion title completion for Stack Overflow, there are no corre-
sponding baselines for this problem. Therefore, we consider
a traditional language model N -gram and the recently pro-
posed question title generation approach SOTitle [12] as our
baselines.

SOTitle. SOTitle [12] is a Transformer-based approach by
leveraging the code snippets and the problem descriptions. It
uses a multi-head attention mechanism to efficiently capture
long-term dependencies.

N -gram. N -gram [29] is a traditional language model.
The next token can be predicted using only the preceding
N -1 tokens. In our study, by iterating over the language
model’s whole vocabulary, the model can determine the most
likely continuation of an input title sequence. We investigated
different N (N ≤ 4) values by running the models on the
training set and determined the best value (i.e., 3-gram).

We replicated these baselines by using scripts shared by the
original studies [12], [29]. Then we used the same data split
strategy and optimized the hyper-parameters of these baselines
to ensure a fair comparison.

Results. Table III shows the comparison results of QTC4SO
and baselines in terms of all performance measures for eight
different programming languages respectively. Then we em-
phasize the best performance for each performance measure
in bold. Notice there are some differences between the title
generation approach and the title completion approach. There-
fore, for SOTitle, we compute the values of the first three
measures by analyzing the generated title and the ground-
truth title. Then we compute the values of the last two
measures by analyzing the first k tokens of the generated
title and the ground-truth title. In this table, we can find
that our proposed approach QTC4SO can achieve the best
performance. Taking the C# programming language as an ex-
ample, compared to SOTitle, QTC4SO can improve the perfor-
mance by 16.39%, 42.06%, 25.88%, 131.69%, and 18.80% for
ROUGE-L, GLEU, BLEU 4, PP 5, and LD 5 respectively.

Specifically, the traditional text completion model N -gram
performs poorly on our title completion task. We conjecture
that a possible reason is that N -gram can not effectively solve
the long-term dependency problem since this approach learns
only a limited number of N consecutive tokens. Moreover, we
find that QTC4SO significantly outperforms the title genera-
tion method SOTitle since QTC4SO considers the developer’s
intention in question title generation. Obviously, if we compute
the performance value by considering all the tokens in the
generated and ground-truth titles, QTC4SO can achieve better
performance in the first three measures.

Fig. 3 shows two examples8 of generating titles for question
posts. The top part of the figure shows the question body.
While the bottom part shows the ground truth and the titles
generated by different approaches. Notice we emphasize the
completion suggestion in red for N -gram and QTC4SO. In
both examples, we find that the titles generated by SOTitle
and N -gram cannot effectively reflect the purpose of the posts.
However, the titles generated by QTC4SO can provide the
key contents of the question posts in a brief and accurate
way, thus demonstrating the effectiveness of QTC4SO and the
importance of developer participation when composing titles.

Summary for RQ1: QTC4SO can generate higher-quality
question titles than state-of-the-art baselines in an automatic
evaluation way.

B. Result Analysis for RQ2

Approach. In this RQ, we design two control approaches
to verify the contributions of the problem description and
code snippets for QTC4SO. Specifically, we use w/o desc
to denote the control approach, which does not consider the
problem description for QTC4SO. In a similar way, we use
w/o code to denote the control approach, which does not
consider the code snippet for QTC4SO. To guarantee a fair
comparison, QTC4SO and two control approaches follow the
same experimental setup.

Results. Due to the paper length limitation, we only show
the performance of QTC4SO with different input modalities
for four programming languages in Table IV, and all results
can be found on our project homepage. When only considering
code snippets (w/o desc), the performance of QTC4SO is
significantly decreased. Specifically, in terms of ROUGE-L,
the performance of QTC4SO drops by 138.60% on average.
When only considering the problem descriptions (w/o code),
the performance of QTC4SO is slightly decreased. These
results demonstrate that the information from code snippets
and problem descriptions is in a certain complementary. More-
over, after we manually analyze some sampled posts, we find
considering both the code snippets and problem descriptions
can help to improve the quality of the generated titles, although
the problem descriptions can make more contributions for
QTC4SO, since we find the problem descriptions can provide
more semantic information for the title completion task.

8The URL of the first post is https://stackoverflow.com/questions/49059956
and the URL of the second post is https://stackoverflow.com/questions/
49009870.

TABLE III
COMPARISON RESULTS BETWEEN OUR PROPOSED APPROACH QTC4SO AND TWO BASELINES

Language Approach ROUGE-L (%) GLEU (%) BLEU 1 / 2 / 3 / 4 (%) PP 1 / 3 / 5 (%) LD 1 / 3 / 5

Python
N-gram 4.17 1.95 2.87 / 0.85 / 0.30 / 0.10 7.75 / 0.13 / 0.02 0.92 / 2.87 / 4.83
SOTitle 27.19 13.21 29.03 / 20.29 / 15.15 / 11.84 21.55 / 7.97 / 2.96 0.79 / 2.46 / 4.16

QTC4SO 30.95 17.96 32.09 / 23.20 / 17.85 / 14.37 39.52 / 13.34 / 7.03 0.61 / 2.07 / 3.64

Java
N-gram 2.91 1.30 2.16 / 0.44 / 0.00 / 0.00 6.02 / 0.00 / 0.00 0.94 / 2.91 / 4.88
SOTitle 25.61 12.63 27.22 / 19.13 / 14.32 / 11.28 21.16 / 7.45 / 2.97 0.79 / 2.48 / 4.21

QTC4SO 29.99 18.08 29.94 / 21.75 / 16.95 / 13.84 39.11 / 13.10 / 6.95 0.61 / 2.11 / 3.70

C#
N-gram 3.08 1.41 2.16 / 0.52 / 0.16 / 0.06 6.03 / 0.06 / 0.00 0.94 / 2.90 / 4.86
SOTitle 26.96 13.22 27.86 / 20.00 / 15.26 / 12.25 21.66 / 8.08 / 3.66 0.78 / 2.46 / 4.17

QTC4SO 31.38 18.78 31.27 / 23.35 / 18.53 / 15.42 40.90 / 14.30 / 8.48 0.59 / 2.04 / 3.51

JavaScript
N-gram 3.12 1.36 2.39 / 0.54 / 0.16 / 0.07 6.33 / 0.01 / 0.00 0.94 / 2.90 / 4.85
SOTitle 29.44 14.96 30.26 / 21.90 / 16.94 / 13.70 22.89 / 9.02 / 4.06 0.77 / 2.43 / 4.08

QTC4SO 33.19 20.48 33.34 / 24.91 / 19.87 / 16.57 41.53 / 15.30 / 8.45 0.59 / 1.99 / 3.51

PHP
N-gram 3.18 1.55 2.21 / 0.57 / 0.27 / 0.19 6.28 / 0.11 / 0.12 0.94 / 2.90 / 4.87
SOTitle 29.38 15.02 30.00 / 21.66 / 16.90 / 13.85 21.86 / 8.17 / 4.31 0.78 / 2.46 / 4.11

QTC4SO 32.84 19.97 32.55 / 24.51 / 19.60 / 16.38 40.52 / 14.76 / 9.10 0.60 / 2.02 / 3.44

Ruby
N-gram 3.77 1.78 2.52 / 0.72 / 0.00 / 0.00 6.42 / 0.08 / 0.00 0.94 / 2.90 / 4.86
SOTitle 27.23 13.55 27.78 / 19.71 / 15.11 / 12.13 21.91 / 8.66 / 3.51 0.78 / 2.44 / 4.09

QTC4SO 32.97 20.02 32.59 / 24.30 / 19.10 / 15.50 40.69 / 15.33 / 8.02 0.59 / 2.01 / 3.52

Go
N-gram 3.97 1.79 2.67 / 0.77 / 0.38 / 0.00 7.03 / 0.23 / 0.00 0.93 / 2.87 / 4.82
SOTitle 30.30 14.83 30.82 / 22.18 / 16.58 / 12.73 27.52 / 11.93 / 4.39 0.73 / 2.23 / 3.84

QTC4SO 32.05 18.89 31.48 / 22.51 / 17.23 / 13.74 43.12 / 14.67 / 8.71 0.57 / 1.97 / 3.47

HTML
N-gram 3.38 1.54 2.43 / 0.61 / 0.18 / 0.07 6.56 / 0.06 / 0.01 0.93 / 2.89 / 4.85
SOTitle 26.53 11.74 26.27 / 16.94 / 11.51 / 8.04 21.54 / 7.57 / 2.07 0.79 / 2.49 / 4.24

QTC4SO 32.06 18.85 32.13 / 21.60 / 15.36 / 11.39 38.96 / 9.04 / 2.87 0.61 / 2.14 / 3.78

Question

Title

Ground Truth: pandas plot value counts barplot in descending manner

SOTitle: Count occurrence of each value in pandas dataframe

N-gram: pandas plot value counts for unique strings

QTC4SO: pandas plot value counts in descending order

Question

Body

Ground Truth: What are the differences between bool() and operator.truth()?

SOTitle: Difference between truth() and operator.truth()

N-gram: What are the steps to make a menu

QTC4SO: What are the difference between bool() and operator.truth()?

bool() and operator.truth() both test whether a value is truthy or falsy and they seem

rather similar from the docs, it even says in the truth() docs that:

However, truth() is over twice as fast as bool() from a simple test(Python 3.6 timings

shown, but 2.7 is similar):

So what are the differences? Should l use truth() instead of bool()?

This Q&A arose after extensive comments and discussion with ShadowRanger under

this question.

from timeit import timeit

print(timeit('bool(1)',number=10000000))

2.180289956042543

print(timeit('truth(1)',setup='from operator import truth',number=10000000))

0.7202018899843097

This is equivalent to using the bool constructor.

I have a dataframe where i am trying to count the occurrence of

each value. I plot it as horizontal bar but cant get it to be sorted.

df = pd.DataFrame(['A','A','A','B','B','C'],columns = ['letters'])

df.value_counts()

A 3

B 2

C 1

df.letters.value_counts().plot(kind=‘barh’)

<matplotlib.axes._subplots.AxesSubplot at 0x172737a20>

How can i get it sorted in a descending manner?

Fig. 3. Examples of generated question titles by different approaches

Summary for RQ2: For the question title completion
task, problem descriptions can make more contributions than
code snippets. Moreover, considering bi-modal information
can achieve the best performance for QTC4SO.

C. Result Analysis for RQ3

Approach. To investigate the performance impact of dif-
ferent pre-trained models on QTC4SO. we further consider
other three state-of-the-art pre-trained models, which have
been widely used in previous text summarization studies [21]–
[23].

BERT. BERT [30] is a pre-trained model based on the
Transformer architecture, which contains a bi-directional at-

tention mechanism. By removing the decoder layer of the
transformer, BERT has achieved impressive performance in
many downstream tasks (e.g., code completion [51], text
classification [52], sentiment analysis [53]).

CodeBERT. CodeBERT [31] considers the original BERT-
based architecture, but with some modifications in key pa-
rameters. CodeBERT pre-trained both natural language (NL)
and programming language (PL) data from the CodeSearchNet
database in a pre-training task.

BART. BART [32] is implemented as a sequence-to-
sequence model with a bidirectional encoder for corrupted text
and a left-to-right autoregressive decoder. BART is particularly
efficient when fine-tuned for neural machine translation.

TABLE IV
THE PERFORMANCE OF QTC4SO WITH DIFFERENT INPUT MODALITIES

Language Approach ROUGE-L (%) GLEU (%) BLEU 1 / 2 / 3 / 4 (%) PP 1 / 3 / 5 (%) LD 1 / 3 / 5

Python
w/o desc 15.24 7.53 16.38 / 9.64 / 6.71 / 5.26 22.59 / 3.84 / 2.05 0.77 / 2.53 / 4.36
w/o code 28.79 16.10 29.20 / 20.24 / 14.92 / 11.50 36.48 / 11.16 / 5.45 0.64 / 2.15 / 3.78
QTC4SO 30.95 17.96 32.09 / 23.20 / 17.85 / 14.37 39.52 / 13.34 / 7.03 0.61 / 2.07 / 3.64

Java
w/o desc 12.77 6.46 13.56 / 8.15 / 5.92 / 4.80 19.24 / 3.47 / 2.13 0.81 / 2.61 / 4.43
w/o code 27.09 15.79 27.06 / 18.66 / 13.79 / 10.66 35.56 / 10.69 / 4.77 0.64 / 2.20 / 3.83
QTC4SO 29.99 18.08 29.94 / 21.75 / 16.95 / 13.84 39.11 / 13.10 / 6.95 0.61 / 2.11 / 3.70

Ruby
w/o desc 17.44 9.26 16.75 / 11.28 / 8.54 / 6.97 23.03 / 6.30 / 3.61 0.77 / 2.46 / 4.19
w/o code 28.11 16.02 27.89 / 19.56 / 14.36 / 10.90 34.69 / 11.62 / 5.35 0.65 / 2.18 / 3.81
QTC4SO 32.97 20.02 32.59 / 24.30 / 19.10 / 15.50 40.69 / 15.33 / 8.02 0.59 / 2.01 / 3.52

Go
w/o desc 17.81 9.81 17.44 / 11.14 / 7.66 / 5.84 22.78 / 4.29 / 1.52 0.77 / 2.54 / 4.37
w/o code 29.44 17.01 30.45 / 21.65 / 16.63 / 13.54 39.14 / 13.09 / 9.47 0.61 / 2.06 / 3.52
QTC4SO 32.05 18.89 31.48 / 22.51 / 17.23 / 13.74 43.12 / 14.67 / 8.71 0.57 / 1.97 / 3.47

To guarantee a fair comparison, we also keep the experi-
mental setting the same in the model fine-tuning phase.

Results. Here, we also show the comparison results of using
different pre-trained models for four programming languages
in Table V, and all results can be found on our project
homepage. In this table, we can find that QTC4SO with T5
can significantly outperform the other three models in terms
of all performance measures. For example, in terms of PP 1,
QTC4SO with T5 can improve the performance on average for
four programming languages by 55.73%, 19.05%, and 91.12%,
respectively when compared to BERT, CodeBERT, and BART.

Summary for RQ3: Compared to the other three pre-
trained models, QTC4SO with T5 can achieve the best perfor-
mance.

D. Result Analysis for RQ4

Approach. In this RQ, we perform a human study to
evaluate the quality of the titles generated by SOTitle and our
proposed approach QTC4SO. We follow the human evaluation
methodology used in previous studies [21] and consider three
evaluation criteria (i.e., similarity, naturalness, and informa-
tiveness).

• Similarity. Measuring the similarity between the gener-
ated title and the ground truth.

• Naturalness. Measuring the grammaticality and fluency
of the generated title.

• Informativeness. Measuring the amount of content ex-
pressed by the generated title, which ignores its fluency.

The detailed score scheme for these criteria can be found on
our project homepage. Notice the score values range from 1 to
4. The higher the score, the better the quality of the generated
titles.

Then we randomly select 20 posts for each programming
language in the testing set, which contains a total of 160
posts. For each post, we gather the ground-truth title and
two titles generated by QTC4SO and SOTitle respectively.
We invited eight graduate students, who are not co-authors
and are familiar with Stack Overflow to participate in our
study. Later, 40 posts of each two programming languages
were manually evaluated by two graduate students according

to the above-mentioned three criteria and the participants do
not know which title is generated by QTC4SO. Finally, we
averaged the scores of two students for each post. Moreover,
the recruited students were free to use the Internet to look for
related concepts that they are unfamiliar with. And we require
students to evaluate only 20 posts in a half-day to ensure the
quality of our human evaluation.

Results. The evaluation results are shown in Fig. 4. In
terms of the similarity criterion, thanks to the title hints by
the developers, QTC4SO can achieve higher similarity scores
than SOTitle with an average score of 2.98, which means that
the titles generated by QTC4SO are considered to be of good
quality and can be used as titles without major modifications.
In terms of the naturalness criterion, these two approaches
achieve similar performance as expected, which proves that
most of the titles generated by the deep learning models
are considered easy to read and understand. In terms of the
informativeness criterion, QTC4SO can generate more com-
prehensive titles than SOTitle. This shows by considering the
developer’s intent and using a pre-trained T5 model, QTC4SO
is more capable of handling long-term dependencies in multi-
modal inputs and is more advantageous in terms of semantic
understanding. To assess the differences in student scoring
results, we used Fleiss Kappa [54] to measure the consistency
of scoring results. The overall Kappa value was 0.752, which
indicates a general agreement among these students.

Summary for RQ4: Our human study shows that QTC4SO
outperforms the baseline SOTitle by considering similarity,
naturalness, and informativeness.

V. DISCUSSION

A. Advantages of Multi-task Learning in QTC4SO

To analyze the advantage of multi-task learning in QTC4SO,
we use QTC4SOsingle to represent the control approach,
which trains the models separately for each programming
language. Due to the paper length limitation, Table VI shows
a portion of the comparison results, and the complete results
can be found on our project homepage. In this table, we can
find that for each programming language, the performance
of QTC4SO based on multi-task learning outperforms that

TABLE V
COMPARISON RESULTS OF USING DIFFERENT PRE-TRAINED MODELS FOR QTC4SO

Language Approach ROUGE-L (%) GLEU (%) BLEU 1 / 2 / 3 / 4 (%) PP 1 / 3 / 5 (%) LD 1 / 3 / 5

Python

BERT 19.33 10.08 18.28 / 11.00 / 7.06 / 4.66 27.26 / 4.77 / 1.07 0.73 / 2.46 / 4.26
CodeBERT 25.81 15.73 20.72 / 14.14 / 10.19 / 7.63 34.33 / 7.02 / 2.31 0.66 / 2.30 / 4.00

BART 25.17 14.79 26.16 / 19.26 / 15.01 / 12.36 20.59 / 7.08 / 3.63 0.79 / 2.42 / 4.04
QTC4SO (T5) 30.95 17.96 32.09 / 23.20 / 17.85 / 14.37 39.52 / 13.34 / 7.03 0.61 / 2.07 / 3.64

Java

BERT 15.98 8.31 15.05 / 8.64 / 5.39 / 3.48 25.34 / 4.00 / 0.85 0.75 / 2.51 / 4.33
CodeBERT 22.85 13.66 18.05 / 11.91 / 8.29 / 6.01 32.61 / 5.60 / 1.50 0.67 / 2.36 / 4.12

BART 23.11 13.71 23.98 / 17.71 / 14.00 / 11.55 20.50 / 6.94 / 3.66 0.80 / 2.45 / 4.06
QTC4SO (T5) 29.99 18.08 29.94 / 21.75 / 16.95 / 13.84 39.11 / 13.10 / 6.95 0.61 / 2.11 / 3.70

Ruby

BERT 18.17 9.81 17.55 / 10.98 / 7.54 / 5.30 25.80 / 4.84 / 1.60 0.74 / 2.50 / 4.29
CodeBERT 25.36 15.75 20.03 / 13.96 / 9.94 / 6.99 33.04 / 7.02 / 1.47 0.67 / 2.33 / 4.07

BART 25.88 15.63 27.65 / 21.09 / 17.06 / 14.38 22.25 / 8.31 / 4.95 0.78 / 2.39 / 3.97
QTC4SO (T5) 32.97 20.02 32.59 / 24.30 / 19.10 / 15.50 40.69 / 15.33 / 8.02 0.59 / 2.01 / 3.52

Go

BERT 19.55 11.08 17.72 / 10.69 / 7.36 / 5.34 25.99 / 4.51 / 1.89 0.74 / 2.45 / 4.26
CodeBERT 27.28 17.29 21.98 / 14.45 / 10.06 / 7.68 36.54 / 5.64 / 3.03 0.64 / 2.29 / 4.02

BART 25.18 14.88 25.98 / 19.27 / 14.90 / 12.25 21.68 / 7.67 / 4.17 0.78 / 2.38 / 3.94
QTC4SO (T5) 32.05 18.89 31.48 / 22.51 / 17.23 / 13.74 43.12 / 14.67 / 8.71 0.57 / 1.97 / 3.47

Similarity Naturalness Informativeness

1

2

3

4

S
co

re

2.67

3.25

2.73

2.98

3.36

3.02

SOTitle
QTC4SO

Fig. 4. The average score value of our human study by considering similarity,
naturalness, and informativeness

of the models trained on the single programming language
separately. For example, in terms of ROUGE-L, compared to
QTC4SOsingle, QTC4SO can improve the performance by
at most 28.00% for eight programming languages. Moreover,
we also find that using multi-task learning can significantly
improve the performance of low-source programming lan-
guages (i.e., Ruby and Go). The possible reason is that
QTC4SOsingle cannot effectively learn useful information
due to insufficient training data of low-source programming
languages. While using multi-task learning, QTC4SO can
learn shared and complementary information from other pro-
gramming languages with sufficient training data, thus helping
to improve each other’s performance.

B. Threats to Validity

Internal validity. The first internal threat is the potential
faults in the implementation of QTC4SO and baselines. To

alleviate this threat, we used mature frameworks (such as
PyTorch and transformers) to ensure the code implementation
correctness. For the baselines, we used the scripts shared by
previous work [12]. The second internal threat is related to
various hyperparameter settings. There exists an excessive
time consumption problem in finding an optimal hyperpa-
rameter setting for QTC4SO. However, based on our current
hyperparameter setting, QTC4SO can still achieve promising
performance and the performance can be further improved by
hyperparameter optimization.

External validity. The main external threat is related to the
quality of our constructed corpus. To alleviate this threat, we
first select the most popular programming languages discussed
in Stack Overflow to guarantee the generalization of our
empirical studies. We second design four heuristic rules to
filter low-quality question posts. We third split the corpus
by considering the temporal relationship of posts. Finally, we
design the masking operator by considering the characteristics
of this task. In the future, we want to design more rules to
further improve the quality of the corpus.

Construct validity. The main construct threat is related to our
used performance measures. To evaluate the effectiveness of
QTC4SO, we consider classical measures from similar tasks
(such as text summarization, and code completion). Moreover,
we also conducted a human study to evaluate the quality of
the generated titles.

Conclusion validity. The main conclusion threat is related
to the bias of our human study. To alleviate this threat, We
first invited graduate students, which are familiar with Stack
Overflow to participate in our study. We second provided a
tutorial before our human study, which can ensure that all of
the graduate students can understand our protocol. Finally, we
use Fleiss Kappa [54] to measure the consistency among all
graduate students.

TABLE VI
COMPARISON RESULTS BETWEEN QTC4SOsingle AND QTC4SO FOR DIFFERENT PROGRAMMING LANGUAGES

Language Approach ROUGE-L (%) GLEU (%) BLEU 1 / 2 / 3 / 4 (%) PP 1 / 3 / 5 (%) LD 1 / 3 / 5

Python QTC4SOsingle 30.50 17.68 31.80 / 22.76 / 17.39 / 13.98 38.77 / 12.87 / 6.95 0.61 / 2.09 / 3.66
QTC4SO 30.95 17.96 32.09 / 23.20 / 17.85 / 14.37 39.52 / 13.34 / 7.03 0.61 / 2.07 / 3.64

Java QTC4SOsingle 28.01 16.72 26.71 / 19.31 / 14.90 / 12.01 36.89 / 12.51 / 6.90 0.63 / 2.15 / 3.74
QTC4SO 29.99 18.08 29.94 / 21.75 / 16.95 / 13.84 39.11 / 13.10 / 6.95 0.61 / 2.11 / 3.70

Ruby QTC4SOsingle 27.25 15.08 26.58 / 18.46 / 13.40 / 10.02 35.28 / 11.14 / 4.14 0.65 / 2.18 / 3.82
QTC4SO 32.97 20.02 32.59 / 24.30 / 19.10 / 15.50 40.69 / 15.33 / 8.02 0.59 / 2.01 / 3.52

Go QTC4SOsingle 25.04 14.28 26.33 / 17.64 / 12.87 / 9.95 34.40 / 10.16 / 4.55 0.66 / 2.18 / 3.79
QTC4SO 32.05 18.89 31.48 / 22.51 / 17.23 / 13.74 43.12 / 14.67 / 8.71 0.57 / 1.97 / 3.47

VI. RELATED WORK

A. Question Title Generation for Stack Overflow

To maintain the usefulness of Q&A websites (such as Stack
Overflow), it is vital to ensure the quality of question posts. [5],
[55]–[57]. In recent years, some researchers focused on the
problem of question title generation for Stack Overflow, since
high-quality titles are also a key factor in measuring the
quality of question posts. Gao et al. [11] were the first to
propose a sequence-to-sequence model, which can automati-
cally generate question titles by analyzing the code snippets.
Later, Liu et al. [12] further considered the information in
the problem description and proposed a Transformer-based
approach SOTitle. Zhang et al. [13] also proposed a deep
learning-based question title generation model by leveraging
the bi-modal information of the question body.

However, the quality of titles generated by existing ap-
proaches is still affected by the information available in the
post content. A more reasonable approach is that developers
can provide some tips when composing titles. Therefore, we
are the first to study the problem of question title completion
for Stack Overflow. To solve this problem, we build a large-
scale corpus by mining Stack Overflow and then propose a
novel approach QTC4SO based on the multi-modal input,
multi-task learning, and the pre-trained model T5. Both au-
tomatic evaluation and human study verify the effectiveness
of our study.

B. Code Completion

In current studies of artificial intelligence for software
engineering, the task most similar to our investigated problem
is code completion, which suggests the next code token from
a given code context. In the early studies, researchers [58],
[59] utilized statistical language models to automatically learn
the naturalness of source code based on a probabilistic of the
occurrence of source code. However, this kind of approach
cannot effectively solve the long-term dependency problem
when the source code is long. Recently, researchers resorted to
deep learning and code representation techniques to solve this
problem. For example, Li et al. [60] designed a pointer mixture
network to predict the AST (Abstract Syntax Tree) node. Kim
et al. [61] proposed TravTrans, which is a Transformer-based
language model that incorporates different coding styles. Liu

et al. [25], [62] proposed a self-attentional neural architecture
for code completion with multi-task learning. Izadi et al. [26]
proposed CodeFill, which combines learned structure and
naming information. This approach is based on a parallel
Transformer architecture and multi-task learning.

Motivated by the code completion task, we introduce the
idea of completion into the problem of question title gener-
ation for Stack Overflow and open a new direction for this
research topic. Moreover, we also refer to the state-of-the-
art approaches in code completion when designing QTC4SO,
such as the usage of the multi-modal input, the paradigm of
pre-training and fine-tuning, and multi-task learning.

VII. CONCLUSION

This study provides a new perspective for studying auto-
matic question title generation for Stack Overflow. Specifi-
cally, we aim to generate completion suggestions by consider-
ing tip information provided by developers when composing
titles, and this task is named as question title completion.
Then we propose a novel data-driven approach QTC4SO.
QTC4SO adopts multi-task learning to this task for multiple
programming languages and a pre-trained model T5 to au-
tomatically learn the title completion patterns based on the
multi-modal inputs. To train the title completion model, we
build a large-scale corpus by mining Stack Overflow. The
automatic evaluation and human evaluation results show that
QTC4SO can generate higher-quality titles than a state-of-the-
art question title generation approach SOTitle [12]. Finally,
we developed a browser plugin tool to make our proposed
approach QTC4SO more practical.

Open Science. To support the open science community,
we share our gathered corpus, scripts, trained model, detailed
experimental results, and the developed plugin tool in the
GitHub repository (https://github.com/QTC4SO/QTC4SO).

ACKNOWLEDGEMENT

Yanlin Zhou and Shaoyu Yang have contributed equally to
this work and they are co-first authors. The authors would
like to thank the anonymous reviewers for their insightful
comments and suggestions, which can substantially improve
the quality of this work. This research was partially supported
by the Postgraduate Research & Practice Innovation Program
of Jiangsu Province (SJCX22 1616).

REFERENCES

[1] M. Choetkiertikul, D. Avery, H. K. Dam, T. Tran, and A. Ghose, “Who
will answer my question on stack overflow?” in 2015 24th Australasian
Software Engineering Conference. IEEE, 2015, pp. 155–164.

[2] W. Zhu, H. Zhang, A. E. Hassan, and M. W. Godfrey, “An empirical
study of question discussions on stack overflow,” Empirical Software
Engineering, vol. 27, no. 6, pp. 1–25, 2022.

[3] K. Cao, C. Chen, S. Baltes, C. Treude, and X. Chen, “Automated
query reformulation for efficient search based on query logs from
stack overflow,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 2021, pp. 1273–1285.

[4] S. Mondal, C. K. Saifullah, A. Bhattacharjee, M. M. Rahman, and
C. K. Roy, “Early detection and guidelines to improve unanswered
questions on stack overflow,” in 14th Innovations in software engineering
conference (formerly known as India software engineering conference),
2021, pp. 1–11.

[5] L. Ponzanelli, A. Mocci, A. Bacchelli, M. Lanza, and D. Fullerton,
“Improving low quality stack overflow post detection,” in 2014 IEEE
international conference on software maintenance and evolution. IEEE,
2014, pp. 541–544.

[6] F. Calefato, F. Lanubile, and N. Novielli, “How to ask for technical
help? evidence-based guidelines for writing questions on stack overflow,”
Information and Software Technology, vol. 94, pp. 186–207, 2018.

[7] D. Correa and A. Sureka, “Fit or unfit: analysis and prediction of’closed
questions’ on stack overflow,” in Proceedings of the first ACM confer-
ence on Online social networks, 2013, pp. 201–212.

[8] Y. Yao, H. Tong, T. Xie, L. Akoglu, F. Xu, and J. Lu, “Want a good
answer? ask a good question first!” arXiv preprint arXiv:1311.6876,
2013.

[9] Y. Zhang, D. Lo, X. Xia, and J.-L. Sun, “Multi-factor duplicate question
detection in stack overflow,” Journal of Computer Science and Technol-
ogy, vol. 30, no. 5, pp. 981–997, 2015.

[10] M. Ahasanuzzaman, M. Asaduzzaman, C. K. Roy, and K. A. Schneider,
“Mining duplicate questions of stack overflow,” in 2016 IEEE/ACM 13th
Working Conference on Mining Software Repositories (MSR). IEEE,
2016, pp. 402–412.

[11] Z. Gao, X. Xia, J. Grundy, D. Lo, and Y.-F. Li, “Generating question
titles for stack overflow from mined code snippets,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 29, no. 4, pp.
1–37, 2020.

[12] K. Liu, G. Yang, X. Chen, and C. Yu, “Sotitle: A transformer-based
post title generation approach for stack overflow,” in 2022 IEEE 29th
IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2022, pp. 577–588.

[13] F. Zhang, X. Yu, J. Keung, F. Li, Z. Xie, Z. Yang, C. Ma, and Z. Zhang,
“Improving stack overflow question title generation with copying en-
hanced codebert model and bi-modal information,” Information and
Software Technology, vol. 148, p. 106922, 2022.

[14] Z. Gao, X. Xia, D. Lo, J. Grundy, and Y.-F. Li, “Code2que: a tool for
improving question titles from mined code snippets in stack overflow,”
in Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2021, pp. 1525–1529.

[15] X. Liu, P. He, W. Chen, and J. Gao, “Multi-task deep neural networks
for natural language understanding,” in Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, 2019, pp.
4487–4496.

[16] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, P. J. Liu et al., “Exploring the limits of transfer learning
with a unified text-to-text transformer.” J. Mach. Learn. Res., vol. 21,
no. 140, pp. 1–67, 2020.

[17] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,”
in Text summarization branches out, 2004, pp. 74–81.

[18] A. Mutton, M. Dras, S. Wan, and R. Dale, “Gleu: Automatic evaluation
of sentence-level fluency,” in Proceedings of the 45th Annual Meeting
of the Association of Computational Linguistics, 2007, pp. 344–351.

[19] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
annual meeting of the Association for Computational Linguistics, 2002,
pp. 311–318.

[20] V. I. Levenshtein et al., “Binary codes capable of correcting deletions,
insertions, and reversals,” in Soviet physics doklady, vol. 10, no. 8.
Soviet Union, 1966, pp. 707–710.

[21] B. Wei, Y. Li, G. Li, X. Xia, and Z. Jin, “Retrieve and refine:
exemplar-based neural comment generation,” in 2020 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2020, pp. 349–360.

[22] J. Zhang, X. Wang, H. Zhang, H. Sun, and X. Liu, “Retrieval-based
neural source code summarization,” in 2020 IEEE/ACM 42nd Interna-
tional Conference on Software Engineering (ICSE). IEEE, 2020, pp.
1385–1397.

[23] G. Yang, Y. Zhou, X. Chen, and C. Yu, “Fine-grained pseudo-code
generation method via code feature extraction and transformer,” in 2021
28th Asia-Pacific Software Engineering Conference (APSEC). IEEE,
2021, pp. 213–222.

[24] J. Li, R. Huang, W. Li, K. Yao, and W. Tan, “Toward less hidden
cost of code completion with acceptance and ranking models,” in 2021
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2021, pp. 195–205.

[25] F. Liu, G. Li, B. Wei, X. Xia, Z. Fu, and Z. Jin, “A unified multi-task
learning model for ast-level and token-level code completion,” Empirical
Software Engineering, vol. 27, no. 4, pp. 1–38, 2022.

[26] M. Izadi, R. Gismondi, and G. Gousios, “Codefill: Multi-token code
completion by jointly learning from structure and naming sequences,”
arXiv preprint arXiv:2202.06689, 2022.

[27] A. Ciurumelea, S. Proksch, and H. C. Gall, “Suggesting comment
completions for python using neural language models,” in 2020 IEEE
27th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2020, pp. 456–467.

[28] A. Mastropaolo, E. Aghajani, L. Pascarella, and G. Bavota, “An empir-
ical study on code comment completion,” in 2021 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
2021, pp. 159–170.

[29] G. Kondrak, “N-gram similarity and distance,” in International sympo-
sium on string processing and information retrieval. Springer, 2005,
pp. 115–126.

[30] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[31] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” in Findings of the Association for Computational
Linguistics: EMNLP 2020, 2020, pp. 1536–1547.

[32] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, “Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehen-
sion,” in Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, 2020, pp. 7871–7880.

[33] X. Hu, Q. Chen, H. Wang, X. Xia, D. Lo, and T. Zimmermann,
“Correlating automated and human evaluation of code documentation
generation quality,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 31, no. 4, pp. 1–28, 2022.

[34] K. Bajaj, K. Pattabiraman, and A. Mesbah, “Mining questions asked
by web developers,” in Proceedings of the 11th Working conference on
mining software repositories, 2014, pp. 112–121.

[35] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A comprehensive study
on deep learning bug characteristics,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2019, pp. 510–
520.

[36] T. Kudo and J. Richardson, “Sentencepiece: A simple and language inde-
pendent subword tokenizer and detokenizer for neural text processing,”
in Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, 2018, pp. 66–71.

[37] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[38] J. Cheng, L. Dong, and M. Lapata, “Long short-term memory-networks
for machine reading,” in Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, 2016, pp. 551–
561.

[39] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[41] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” Advances in neural information processing
systems, vol. 27, 2014.

[42] Z. Li, Y. Wu, B. Peng, X. Chen, Z. Sun, Y. Liu, and D. Paul,
“Setransformer: A transformer-based code semantic parser for code
comment generation,” IEEE Transactions on Reliability, 2022.

[43] G. Yang, Y. Zhou, X. Chen, X. Zhang, T. Han, and T. Chen, “Exploit-
gen: Template-augmented exploit code generation based on codebert,”
Journal of Systems and Software, vol. 197, p. 111577, 2023.

[44] G. Yang, K. Liu, X. Chen, Y. Zhou, C. Yu, and H. Lin, “Ccgir:
Information retrieval-based code comment generation method for smart
contracts,” Knowledge-Based Systems, vol. 237, p. 107858, 2022.

[45] Z. Li, Y. Wu, B. Peng, X. Chen, Z. Sun, Y. Liu, and D. Yu, “Secnn: A
semantic cnn parser for code comment generation,” Journal of Systems
and Software, vol. 181, p. 111036, 2021.

[46] C. Yu, G. Yang, X. Chen, K. Liu, and Y. Zhou, “Bashexplainer:
Retrieval-augmented bash code comment generation based on fine-
tuned codebert,” in 2022 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2022, pp. 82–93.

[47] G. Yang, X. Chen, Y. Zhou, and C. Yu, “Dualsc: Automatic generation
and summarization of shellcode via transformer and dual learning,” in
2022 IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2022, pp. 361–372.

[48] K. Liu, G. Yang, X. Chen, and Y. Zhou, “El-codebert: Better exploiting
codebert to support source code-related classification tasks,” in Proceed-
ings of the 13th Asia-Pacific Symposium on Internetware, 2022, pp. 147–
155.

[49] C. Napoles, K. Sakaguchi, M. Post, and J. Tetreault, “Ground truth for
grammatical error correction metrics,” in Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume
2: Short Papers), 2015, pp. 588–593.

[50] L. Prechelt, “Early stopping-but when?” in Neural Networks: Tricks of
the trade. Springer, 1998, pp. 55–69.

[51] M. Ciniselli, N. Cooper, L. Pascarella, D. Poshyvanyk, M. Di Penta,
and G. Bavota, “An empirical study on the usage of bert models for
code completion,” in 2021 IEEE/ACM 18th International Conference
on Mining Software Repositories (MSR). IEEE, 2021, pp. 108–119.

[52] X. Chen, P. Cong, and S. Lv, “A long-text classification method of
chinese news based on bert and cnn,” IEEE Access, vol. 10, pp. 34 046–
34 057, 2022.

[53] R. Chandra and V. Kulkarni, “Semantic and sentiment analysis of se-
lected bhagavad gita translations using bert-based language framework,”
IEEE Access, vol. 10, pp. 21 291–21 315, 2022.

[54] J. L. Fleiss, “Measuring nominal scale agreement among many raters.”
Psychological bulletin, vol. 76, no. 5, p. 378, 1971.

[55] J. Yang, C. Hauff, A. Bozzon, and G.-J. Houben, “Asking the right
question in collaborative q&a systems,” in Proceedings of the 25th ACM
conference on Hypertext and social media, 2014, pp. 179–189.

[56] M. Duijn, A. Kucera, and A. Bacchelli, “Quality questions need quality
code: Classifying code fragments on stack overflow,” in 2015 IEEE/ACM
12th Working Conference on Mining Software Repositories. IEEE,
2015, pp. 410–413.

[57] P. Arora, D. Ganguly, and G. J. Jones, “The good, the bad and their kins:
Identifying questions with negative scores in stackoverflow,” in 2015
IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM). IEEE, 2015, pp. 1232–1239.

[58] A. Hindle, E. T. Barr, M. Gabel, Z. Su, and P. Devanbu, “On the
naturalness of software,” Communications of the ACM, vol. 59, no. 5,
pp. 122–131, 2016.

[59] V. Raychev, M. Vechev, and E. Yahav, “Code completion with statistical
language models,” in Proceedings of the 35th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, 2014, pp.
419–428.

[60] J. Li, Y. Wang, M. R. Lyu, and I. King, “Code completion with neural
attention and pointer networks,” in Proceedings of the 27th International
Joint Conference on Artificial Intelligence, 2018, pp. 4159–25.

[61] S. Kim, J. Zhao, Y. Tian, and S. Chandra, “Code prediction by feeding
trees to transformers,” in 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). IEEE, 2021, pp. 150–162.

[62] F. Liu, G. Li, B. Wei, X. Xia, Z. Fu, and Z. Jin, “A self-attentional neural
architecture for code completion with multi-task learning,” in Proceed-
ings of the 28th International Conference on Program Comprehension,
2020, pp. 37–47.

